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Abstract

Thermal injury is a severe form of trauma that is accompanied by 
significant, persistent metabolic and immune dysregulation. The extent of 
altered post-burn metabolism and inflammation is correlated with severity of 
injury, with severe burns demonstrating a more significant hypermetabolic, 
hyperinflammatory response. This in turn delays re-epithelialization and 
exacerbates poor post-burn wound healing, which is the most important 
factor in patient mortality outcomes. Recently, stem cells have gained interest 
in burn wound healing applications due to their capacity to produce multiple 
cellular subtypes and improve the rate and quality of healing. Here, we focus 
on applications of mesenchymal stem cells in wound healing. In particular, 
we highlight the characteristics and efficacy of burn-derived mesenchymal 
stem cells (BD-MSCs), which improve healing in animal models. Discarded 
burn tissue is a source of pro-healing BD-MSCs, providing a safe, non-invasive 
therapeutic option for burn patients. 

Burn-Related Complications and Current Standard of Care 
Persistent inflammatory derangements are a hallmark of burn 

trauma that ultimately influences wound healing1. Inflammatory 
mediators such as cytokines recruit immune cells (e.g. macrophages, 
leukocytes) to the site of injury during the preliminary stage of wound 
healing. These cytokines in turn recruit keratinocytes and activated 
fibroblasts to the wound bed, promoting re-epithelialization, which 
is a key factor in patient outcomes2-5. However, while inflammation 
is likely necessary for healing, excessive, prolonged post-burn 
inflammation in turn promotes tissue destruction and increases 
risk of abnormal scarring (e.g. hypertrophic scars)6-10. Targeting 
inflammation with systemic anti-inflammatory agents such as 
glucocorticoids is detrimental, especially in large burns. Instead, 
excision and grafting during the inflammatory phase is performed 
in order to mitigate inflammation and decrease infection, which 
is another common complication of burn wounds. Burn patients 
are susceptible to drug resistant infections, which can result in 
an enhanced immune response accompanied by septic shock, 
hypotension and poor skin perfusion which ultimately further 
delays wound healing11. Thus, therapeutic strategies that regulate 
local immune responses to enhance healing are key in preventing 
scarring and infection.

Standard of care for burn wound management is early excision 
and debridement (within 72 hours post-injury) followed by 
autologous split-thickness skin grafting12-16. Early excision is 
associated with decreased blood loss, infection and mortality 
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coupled with increased graft take17-20. However, this poses 
certain challenges, including creation of a new wound site 
and complications such as pain, scarring, infection21,22. This 
is in addition to the fact that severe burns (>30% TBSA) 
require a significant amount of healthy skin for grafting, 
precluding use of this strategy. Due to these limitations, 
there is a need for alternative wound coverage strategies, 
although current options are ineffective secondary to high 
cost, poor efficacy, and long production time23,24. 

Currently, cell-based techniques for permanent coverage 
are gaining popularity. Culture-based options include patient-
derived keratinocyte isolation and expansion into epidermal 
autografts, which limits the amount of donor skin need 
for coverage of large burns. However, keratinocyte-based 
techniques should be employed carefully since hyperactivation 
may contribute to pathological scarring25. Alternatively, 
utilizing adult MSCs isolated from bone marrow, hair follicles, 
adipose tissue, or skin is another viable option. These stem cells 
promote healing likely via immunomodulation and paracrine 
activation of host cells, and we discuss characteristics of MSCs 
in the following section26. 

Characteristics of Mesenchymal Stem Cells
MSCs are classified based on characteristics such 

as plastic adherence, expression of specific cell surface 
markers (CD73, CD90, CD105) and lack CD14, CD34, CD45 
and HLA-DR, and the ability to differentiate in vitro into 
either adipocytes, chondrocytes or osteoblasts27. While 
the aforementioned characteristics are applicable to all 
MSCs, there are slight variations depending on the tissue 
of isolation. MSCs have several beneficial features for skin 
regeneration such as the capacity for self-renewal, ability to 
home towards wounds, rapid proliferation and the ability 
to differentiate into a host of cell types28. Importantly, their 
pro-healing effects can be attributed in part to release of 

growth, cell recruitment, and immunoregulatory factors 
in response to inflammatory mediators that accumulate at 
the site of injury – a process known as ‘licensing’29. 

An added advantage over other stem cell types is that 
MSCs are not immunologically active due to low MHC1 and 
lack of MHCII and co-stimulatory CD80, CD40 and CD86, 
which protects MSCs from natural killer (NK) cell lysis30. 
Furthermore, MSCs can inhibit NK and cytotoxic T-cells via 
various pathways, such as secretion of human leukocyte 
antigen G5, leukemia inhibitor factor (LIF) and IFNg31-

33. More specifically, MSCs induce T-cell apoptosis, which 
enables macrophages to produce TGFb, thus promoting 
generation of regulatory T-cells and macrophage phenotype 
switching to anti-inflammatory subtypes34-36. These 
immunomodulatory effects depend on the quantity and 
type of cytokines present and diminish the risk of immune 
rejection, making MSCs a viable option in inflammatory 
conditions and other clinical applications37,38. However, 
intensity of inflammation regulates MSC-mediated 
immunomodulation, necessitating a strong patient 
inflammatory status for optimal efficacy39. Therefore, burn 
injuries are a potential application for MSCs. The added 
advantage of using skin MSCs in particular is that these 
cells can be easily isolated from debrided burn eschar. 
In the subsequent section, we discuss the isolation and 
advantage of utilizing BD-MSCs.

Isolation of Mesenchymal Stem Cells from Burn 
Skin

Debrided burn skin, which is routinely discarded after 
excision, contains a host of viable cells that have the potential 
to be extracted and incorporated into skin substitutes. 
We previously demonstrated that viable BD-MSCs can be 
isolated from the dermal component of surgically debrided 
burn skin (Figure 1). BD-MSCs can be extracted easily 

Figure 1. Schematic of the methods and application of BD-MSCs in the clinical setting.
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either using an enzymatic or a conventional method. For 
the former, we homogenized fresh tissue and incubated 
with collagenase I. For the latter, we washed tissue in PBS 
with 1% Ab/Am, cut tissue into 1cm squares and placed 
in high glucose DMEM supplemented with 10% FBS and 
1% Ab/Am, and allowed cells to adhere to the surface. 
Isolated cells were characterized using flow cytometry 
(CD73+CD105+CD34-CD45-), and multipotency was 
confirmed by adipogenic, chondrogenic, and osteogenic 
differentiation. For the in vivo murine model, Matrigel 
containing 110,000 BD-MSCs were applied directly to the 
full-thickness punch wound and was subsequently covered 
with Tegaderm. For porcine experiments, we compared 
wound healing outcomes with Integra or Integra containing 
5,000-400,00 BD-MSCs/cm2 in excised burn wounds. 

Outcomes with MSCs 
To date, there are several studies investigating 

applications of locally or systemically injected and topical 
MSCs in animal burn models40. For the purposes of this 
review, we will highlight studies focused the beneficial 
effects of MSC-seeded biomaterials (e.g. decellularized 
tissue extracts, premade porous scaffolds, hydrogel 
formulations) on burn wound healing as a comparison 
to our previous work. Several studies in rodent burn 
models investigated the effect of scaffolds seeded with 
human MSCs41-44. These studies demonstrated accelerated 
wound closure in full-thickness burns, with enhanced 
vascularization, granulation tissue formation, and wound 
maturity – markers for improved healing40. Other studies 
investigating BM-MSC-seeded scaffolds in rodent partial-
thickness burns showed similar effects45,46. Namely, Guo et 
al. showed evidence of enhanced re-epithelialization and 
cellular proliferation coupled with greater blood vessel 
density, and Yang et al. demonstrated accelerated wound 
healing and time to closure45,46. Similarly, several porcine 
studies investigated the effect of scaffolds seeded with 
autologous, allogeneic, or xenogeneic MSCs to treat deep 
partial- or full-thickness burns. Clover et al. demonstrated 
evidence of increased collagen content, epidermal area, 
and dermal thickness by 14 day post-transplantation, 
while Liu et al. showed enhanced wound area contraction 
at 4 weeks after management with an autologous BM-MSC 
seeded scaffold47,48. Burmeister et al. also demonstrated 
increased blood vessel size and percentage of biopsy 
area represented by blood vessels, providing evidence of 
enhanced angiogenesis with treatment49.

We demonstrated similar results with BD-MSCs, with 
the added advantage that these cells can be isolated directly 
from discarded burn tissue. In fact, administration of BD-
MSCs in Matrigel in immunodeficient mice enhanced wound 
closure, reduced granulation tissue size, and reduced 
the thickness of the keratinocyte layer12. This indicates a 
potential anti-scarring effect, which is promising due to 

the fact that burn patients frequently suffer from abnormal 
scarring. Furthermore, BD-MSC administration promoted 
an earlier transition to the remodeling phase of healing. 
Porcine wound models, which resemble human wounding, 
similarly exhibited an accelerated epithelialization time 
and greater dermal blood vessel content, another marker 
of healing12. While this may be a consequence of general 
wound healing, BD-MSCs may have the potential to 
directly promote neovascularization. Furthermore, an 
important consideration of using cell therapy is safety and 
the potential for tumorigenicity, and we demonstrated no 
detrimental effects in vitro and in vivo in both murine and 
porcine wound healing models over 30 days12. 

To date, there are few studies regarding MSC application 
in human burn wound healing, and the current studies vary 
with regards to the time to first MSC administration (five to 
29 days). Rasulov et al. first described the topical application 
of allogeneic BM-MSCs for management of a patient with 
extensive, severe burns, demonstrating enhanced skin 
graft take and neoangiogenesis50. Another case study by 
Mansilla et al. investigated administration of BM-MSCs in 
a fibrin matrix spray system for a 30% TBSA full-thickness 
burn51. The authors demonstrated early “granulation-
like tissue” by day 5 post-treatment, with evidence of 
epithelialization at the wound margins and almost no 
scarring during the three-year follow-up. However, it is 
difficult to determine causality in these case reports due 
to the lack of controls, although these results suggest that 
MSC application to human burn wounds may be a potential 
line of investigation. This is especially promising given the 
effects on wound contracture and scarring. Abo-Elkheir et 
al. demonstrated decreased contracture and hypertrophic 
scarring with locally injected autologous BM-MSCs, in 
addition to fewer late complications52.

In addition to improved healing, there are several other 
advantages to utilizing BD-MSCs. Compared to embryonic 
stem cells, there are no ethical obstacles to BD-MSC 
extraction, and discarded tissue provides an ample source 
of stem cells. Additionally, isolation of BD-MSCs is non-
invasive compared to other sources of MSCs and because 
these are the patients’ own cells, there is no added concern 
of immunological rejection. As we demonstrated earlier, 
BD-MSCs can easily be incorporated into wound coverage 
materials or scaffolds, providing an easy, cost-effective 
method for stem cell delivery to the site of injury. However, 
there are several limitations in our study and potential 
issues with the clinical use of cultured autologous cells. 
Firstly, there are regulatory issues associated with the use 
of cultured autologous cells in general. Culture expansion of 
cells is considered to be “more than minimal” manipulation, 
and these products are classified as medicinal products 
or biologics that must comply with Good Manufacturing 
Practice (GMP) guidelines53. This introduces additional 
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regulatory challenges prior to clinical implementation, 
compounded by factors such as variations between clinical 
sites53.

Additionally, although we demonstrate no detrimental 
effects with BD-MSCs, several studies suggest potential 
adverse affects with MSC treatment54. Also, we did not 
investigate alternate routes of administration such as 
local subcutaneous or intradermal injection, which shows 
some promise in several murine and porcine studies40. 
Furthermore, although we detected human BD-MSCs in 
murine wound tissue after wound closure, it is unclear 
whether these cells remained in their MSC-state or 
differentiated into skin cells. While we provided evidence of 
MSC survival in burn tissue, additional research is needed 
to determine how these cells survive. We postulate that this 
population of stem cells may differ due to their ability to 
resist heat via activation of cellular stress responses. Post-
burn changes include altered mitochondrial dynamics (e.g. 
enhanced uncoupling), and previous studies have shown 
that mitochondrial function influences cellular renewal and 
differentiation55. In fact, mitochondrial fusion is needed to 
promote stem cell differentiation and therefore, post-burn 
mitochondrial dysregulation could promote resistance 
to differentiation in these populations. Although this is 
speculative and further work is still needed to elucidate 
their underlying pro-healing mechanisms, BD-MSC-
embedded scaffolds are a promising therapeutic option for 
burn wound management. 

Concluding Remarks
Although advances in wound care have improved burn 

patient outcomes, severe burns are still associated with 
significant morbidity and mortality. Currently, excision and 
grafting is the gold standard for burn patient management. 
However, a paucity of healthy skin in severe burns limits 
efficacy of autografting. Therefore, utilizing cell-based 

therapies such as biomaterial sheets with MSCs may be an 
attractive option in wound management (Table 1). 
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